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Abstract

Vv'e report our experiences on using a new variant of the Schwarz preconditioned GM-

RES methods in the implicit solution of the unsteady compressible Navier-Stokes equations

discretized on two-dimensional unstructured meshes. We first partition the global mesh

with the recursive spectral bisection method into submeshes, and then we introduce a fam-

ily of Schwarz methods, referred to as the Variable Degree Schwarz methods (VDS) on the

overlapping submeshes. In VDS. the subdomain preconditioner is constructed by using a

polynomial in two matrix variables, namely the matrix, in its un-factorized form, of the

current time step k and another matrix, in its factorized form, obtained at a previous time

step j. The degree of the matrix polynomial in each subdomain is determined automati-

cally so that extra preconditioning is performed only in subdomains whose associated local

matrices have large condition numbers. The extra preconditioning occurs often near the

body of the airfoil. We show numerically that VDS is very effective. Unfike the well-known

elliptic theory, we observe that the convergence rate of VDS preconditioned GMRES de-

generates very mildly without a coarse space for reasonably large number of subdomains.

Vv'e also study the effects of the overlapping size, the number of subdomains and the level of

inexactness of the subdomain solvers. The other purpose of the study is to understand the

robustness of the Schwarz methods with respect to flow parameters, such as the CFL, the

free stream Mach number and the Reynolds number. Numerical results for both subsonic

and transonic problems are reported.
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1. Introduction. The system of unsteady compressible Navier-Stokes (N.-S.) equa-

tions is a fundamental system in fluid dynamics. To be able to solve the system quickly

and accurately in complex geometry is one of the ultimate goals of computational fluid

dynamics [20]. To achieve the goal, several important techniques have been developed in

the past few years, such as unstructured grid generations for complex geometry, stable,
conservative discretizations of the N.-S. equations, unstructured grid partitionings, as well

as the powerful, robust implicit preconditioned iterative solvers discussed below. Most of

the techniques are developed for steady state calculations, see e.g., [1, 5, 16] and references

therein. In this paper, we put all the techniques together and introduce a robust domain

decomposition based fast preconditioned iterative method for the time accurate solution of

unsteady problems.

We study implicit methods for solving unsteady N.-S. equations discretized on two-

dimensional unstructured meshes with a combined finite element/finite volume scheme for

the spatial variables and a simple backward Euler scheme for the temporal variable. It

is well-known that the main advantage of implicit methods is that they allow the time

steps to be determined solely based on the physics of the fluid flow, not on the stability

property of the time discretization scheme, [4, 30, 31]. However, to advance in time, a

large, sparse, nonsymmetric linear system of equations must be constructed and solved at

each time step. Depending of the size of the time step, and several other flow parameters,

the conditioning of the matrix may change from well-conditioned to mildly ill-conditioned.

And due to the complexity of the flow pattern, at a given time step, the matrix may be ill-

conditioned in certain subregions near the airfoil and relatively well-conditioned elsewhere.

Details about the local conditioning of the matrix will be discussed later. To solve these

systems iteratively, it is necessary to have a family of preconditioners whose strength can be

adjusted locally in each subdomain according to the flow condition. Overlapping Schwarz

methods (OSM) is a family of preconditioners for solving large sparse linear systems arising

from the discretization of partial differential equations, see e.g. [6, 8, 11, 27]. It was

originally designed for scalar linear elliptic problems. We find OSM to be very attractive

for our purpose because (1) they are more paraUelizable than the popularly used global ILU

preconditioners; (2) they are efficient for nonsymmetric and indefinite problems; (3) they

have mesh independent convergence rates, at least for elliptic finite element problems; (4)

they have adjustable strength controlled by using the inexact solution techniques for solving

local problems. We shall further explore the flexibility of OSM at the subdomain level and
introduce a new variant below.

It is well-known that when constructing a preconditioner for solving a single system of

linear equations, Au = f, all the information needs to be from the matrix A. However,

the issue for time dependent problems is different. A sequence of inter-related systems

A(etu = f{k) has to be solved. If the matrix, and especially in its (often inexactly) factorized

form, obtained at a previous time step can be properly used, then the preconditioner at

the current time step can be obtained cheaply. More precisely speaking, at each time

step, we solve the global linear system by a preconditioned GMRES method ([26]) and in

the preconditioning stage, following the general overlapping Schwarz framework, we solve

the local subdomain problems by another preconditioned GMRES method, with different

preconditioners and stopping conditions. In each subdomain the preconditioner is built by

using a polynomial in two matrix variables, namely the matrix, in its un-factorized form, of

the current time step k and another matrix, in its factorized form, obtained at a previous

time step j. The degree of the matrix polynomial reflects the conditioning of the subdomain

matrix. Note that classical Schwarz methods correspond to the case where the degree of



the matrix polynomials always equals to one. In our method, the degree of the polynomial

varies from subdomain to subdomain depending the flow conditions, and therefore we refer

to the methods as variable degree Schwarz methods (VDS).

In this paper, we also investigate the difference between the Schwarz family of pre-

conditioners and other methods such as the simple Jacobi iterative method and the global

ILU preconditioned iterative method. Within the Schwarz preconditioners, we try to un-

derstand the role of the overlapping size between subdomains, the effect of the number of

subdomains, and the effect of the inexact subdomain solvers. Since the construction of

the preconditioner is expensive, we explore the possibility of re-using the preconditioner for

several time steps.

We restrict our attention to sequential computers, and single level Schwarz algorithms.

For steady state problems, some studies can be found in [18]. For other recent developments

in unsteady calculations, we refer the readers to [2, 30, 31]. Our focus is on the Schwarz

algorithms, therefore only the simplest time discretization, namely the first order backward

Euler scheme, is considered in this paper. Higher order schemes and their influence on the

Schwarz preconditioners will be discussed in a forthcoming paper. The physical model we

choose to test our algorithms contains a single element NACA0012 airfoil at a rather large

angle of attack with a modest Reynolds number. Both subsonic and transonic cases are

studied in the paper. The paper is organized as follows. In §2, we discuss the unsteady

compressible N.-S. equations in the conservative form, the boundary conditions and a dis-

cretization scheme. In §3, we study a preconditioned iterative method and introduce a

new variant of the overlapping Schwarz preconditioners. Numerical experiments for both

subsonic and transonic flows are reported in §4. §5 includes a few final remarks.

2. The two-dimensional unsteady N.-S. equations. In this section, we describe

the two-dimensional unsteady compressible N.-S. equations in its conservative form. We also

discuss the spatial and temporal discretizations of the equations on unstructured meshes.

Following the notions of Farhat, Fezoui and Lanteri [12, 13], and Fezoui and Stoufltet [15],

for the spatial variables, we use a combined finite element/finite volume scheme and for the

temporal variable we use a simple backward Euler method. The scheme is of second order

in space and first order in time.

2.1. Governing equations. Let l_ C R2 be the flow domain and F its boundary, as

shown in Fig. 1. The conservative form of the N.-S. equations is given by

014; 1

(1) 0--T + Vz-f(VV(£, t)) = _eVZ • 7_(W(£, t)),

where .g and t denote the spatial and temporal variables, and

(FI(W) )J:(w)= F (w) '

Here the functions F1 and F2 denote the convective fluxes

FI(H r) = pu2 + P , f2(W) =

puv

v(E + p)
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and the functions R1 and R2 denote the diffusive fluxes

RI(W) = (oil °
"ok 5¢ Txy -_ VTyy Jr- Pr

In the above expressions, p is the density, (7 = (u, v) T is the velocity vector, E is the total

energy per unit of volume, and p is the pressure. These variables are related by the state

equation for perfect gas

where 7 denotes the ratio of specific heats (7 = 1.4, for air). The specific internal energy E

is related to the temperature via

E = c,F - E 11]0]]2"
p 2

In the diffusive fluxes, Tx_, rxy, and ryy are the components of the two-dimensional Cauchy

stress tensor, k is the normalized thermal conductivity, Pr = po%/ko is the Prandtl number

(Pr = 0.72, for air), and Re = poUoLo/#o is the Reynolds number, where Po, U0, L0, and

#0 denote the characteristic density, velocity, length, and diffusivity, respectively. The

components of Cauchy stress tensor are related to the velocity via

where # denotes the normalized viscosity.

2.2. Boundary conditions. We are interested in unsteady, external flows around an

airfoil as pictured in Fig.1. The domain boundary is F = F_ U Fo_ and the far field velocity

is [7oo. On the wall boundary F_., a no-slip condition on/_7 and a Dirichlet condition on the

temperature T are imposed, i.e.,

(2) if=0", and T=Tw.

No boundary condition is specified for the density. In the far field, the viscous effect is

assumed to be negligible, therefore a uniform free-stream velocity ff_ is imposed on F_

(3) P = 1, /_= cosa and p_-
sin a ' 7 M_ '

where o is the angle of attack, and Moo is the free-stream Mach number.

2.3. Discretization. Let the temporal variable t be discretized as t k = t k-1 + ¢_tk,

where _t k is the discrete time increment and t o = 0. We consider the increment 51,Vk =

14;k - W k-l, where W k is an approximation of W(.,t k) . Note that when an algorithm is

written in the "delta" form [3, 28], the increment 3W k is the unknown variable rather than

W k. Here, we use a first-order finite difference approximation for the temporal variable,

namely, the backward Euler scheme given as

/SW k 1 (Vw(7_k_l). V_,) 6W k
(4) 6t-----T- + (Vw(5 rk-1 ) • Ve) 514'k - R---_
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FIG. 1. The computational domain Q and its wall and far field boundaries.

i v . 1?k-1.= V.(-2 +
Re

where 5vk-I and Rk-1 are approximations of _-( W(., t k- 1) ) and R( W(., t k- 1)), respectively.

We determine the time step size in the following way. Let CFL be a pre-selected positive

number. For each element, with size hi, of the finite element mesh, we define an element

time step size by

CFL

. k tg= hi (c i + IIUill2)+ 2�(Re Pr hi)

and then the global time step is defined by

(5) _Stk = min{_St/k}.

Here Ci is the element sound speed, and Ui is the element velocity vector.

The computational domain is discretized by a triangular grid as pictured in Fig.2. We

use unstructured grids since they provide flexibility for tessellating about complex geome-

tries and for adapting to flow features, such as shocks and boundary layers. We locate the

variables at the vertices of the grid, which gives rise to a cell-vertex scheme. The space of

solutions is taken to be the space of piecewise linear continuous functions. The discrete sys-

tem is obtained via a mixed Galerkin finite element/finite volume formulation; see Farhat

et al. [12, 13], and Fezoui and Stoutttet [15] for details. In short, the discretized system for

(4) is obtained as follows:

• For the time derivative of (4) we use a "mass-lumping" technique, in which we

replace the mass matrix by some diagonal matrix.

• For the convective terms of the left-hand side of (4), we use a first order scheme

that is an extension of Van Leer's MUSCL [29] scheme to the case of unstructured

grids (see Fezoui and Stoufltet [15]) with a Roe approximate Riemann solver [24].

• For the diffusive terms of the left-hand side of (4), we use a Galerkin finite element

(first-order quadrature integration).

• For the convective terms of the right-hand side of (4), we use a second-order scheme

that is again an extension of Van Leer's MUSCL scheme to the case of unstructured

grids (see Fezoui and Stoufltet [15]) with a Roe approximate Riemann solver [24].

We also use Van Albada's limiting procedure to reduce numerical oscillations of the
solutions.

• For the diffusive terms of the right-hand side of(4), we use a regular Galerkin finite

element method (second-order quadrature integration).
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FIG. 2. The top left figure shows the un-decomposed nonuniform shape regular finite element mesh. The top

right figure shows the decomposition of the mesh into non-overlapping subdomains, and the bottom figure is

a blow-up of the figure around the airfoil.



Although both approximations we use for the left-hand side of (4) are spatially first-

order, they operate on the increment $W k and as a consequence the resulting scheme is

spatially second-order for any fixed _it. We assume W k satisfies strongly the wall boundary

conditions on Fw and the far field boundary conditions at infinity. For the initial values, W °

satisfies strongly the wall boundary conditions on F_,, and the far field boundary conditions

at F_. For the initial values and at the interior nodes of f_, W ° takes the free-stream

boundary condition.

Putting pieces of the discretization together, at each time step, we obtain a large, sparse,

generally nonsymmetric linear system of equations of the form

(6) , tk + BIkl = fk,

where D (k) is a diagonal, lumped mass matrix, B (k) is the sum of the convective and diffusive

terms on the left-hand side of (4) discretized by the finite volume and finite element methods,

respectively, fk is the discretized right-hand side of (4), and u k is the approximate nodal

value of _W k at the finite element mesh points. We solve (6) by a preconditioned Krylov

iterative method with a preconditioner M (k) to a certain linear tolerance r, i.e.,

(7)

To simplify the discussion, we shall use A (k) = D(*} + B (k) in the rest of the paper. The

preconditioner M (k) will be introduced in the next section.

3. Solution methods and variable degree Schwarz preeonditioners. In this

section, we first briefly recall the classical additive and multiplicative Schwarz algorithms.

Then we introduce a variable degree version of Schwarz algorithms that is more suitable

for solving time dependent problems. Unlike steady state problems, if certain information

or matrix factorization obtained at the previous time steps can be used a great deal of

calculations can be saved.

Let us review the Schwarz algorithms. Suppose that, at time step k, we need to solve

a linear system of equations

A(k)u k ._ fk,

where A {k) is an explicitly constructed, nonsymmetric and sparse matrix with symmetric

non-zero pattern. Since our main interest is on the multicomponent N.-S. equations in two-

dimensional spaces, each element of A (k) can be considered as a small 4 x 4 matrix, and each

unknown of the vector u (k) is a '4-size' vector. Thus, there is a bijection between unknowns

and vertices. We denote the set of vertices (or nodes) by _r = {1,..., n}, where n represents

the total number of nodes (or unknowns). To define algebraic Schwarz algorithms, see e.g.

[6], we first partition the set N" into no nonoverlapping subsets {A;/} whose union is A/'. We

use the TOP/DOMDEC mesh partitioning package of Farhat et al. [14] to obtain sets Afi.

We use the recursive spectral bisection method ([22]) with certain optimization to obtain

roughly the same number of interior and boundary nodes in each ,_-, and also to obtain

good aspect ratio on the subgrids. To generate an overlapping partitioning with overlap



ovlp, we further expand each subgrid J_ by ovlp number of neighboring nodes, denoted as

We denote by Li the vector space spanned by the set ._i. For each subspace Li, we

define an orthogonal projection operator Ii as follows: Ii is a n x n block diagonal matrix
whose elements are 4 x 4 identity matrices if the corresponding nodes belong to -_i and to

4 x 4 zero matrices otherwise. With this we define

AI k) = IiA(k)Ii ,

which is an extension to the whole subspace, of the restriction of A (k) to Li. Note that

although A! k) is not invertible in the full space, its restriction to the subspace spanned by

j*_ is nonsingular, and we define its inverse by

The classical additive and multiplicative Schwarz algorithms can now be simply described

as follows: Solve the linear system

MA(k)u = M f(k)

by a Krylov subspace method, where

(8) M = (Alk)) -1 + ..-+ (A(ko)) -1 ,

for the additive Schwarz algorithm, and

(9) MA(k)=I-(I-(A}k))-lA(k))'"(I-(A(ko))-lA(k) )

for the multiplicative Schwarz algorithm.

It has been shown that the above mentioned algorithms are very successful for steady

state CFD problems, see e.g., [5, 21] and also [9]. There are three major steps in the

construction of the Schwarz preconditioners, namely 1) the construction of the matrix A(k);

2) the construction of the matrices Alk); and 3) the incomplete factorization of the matrices

A} k). In fact Step 1) is not necessary since the matrices constructed in Step 2) can be used

to calculate the matrix-vector multiplications. Since we are interested in implicit methods,

Step 2) has to be done at every time step no matter how expensive it is. One expensive step

in the construction of the preconditions as formulated above for time dependent problems

is Step 3). One way to avoid the frequent factorization of A! k) is to simply use some

old factorized matrix AI j) calculated at time step j, where j < k. However, this method

may not be very effective if j and k are too far apart. More discussions on using frozen

preconditioners can be found later in the paper.

Another problem with the Schwarz preconditioners (8) and (9) is that all subdomains

are treated equally in terms of the level of preconditioning in the sense that the number of

applications of (Alk)) -x, or its inexact version, is the same on all subdomains, regardless of

the fact that the subdomain matrices AI k) have vary different condition numbers. Physically

speaking, the behavior of the partial differential equations in subdomains near the body of

the airfoil, or near the shocks is very different from the regions that are far from the

subdomains where the real actions take place.



Herewe proposea methodthat placesdifferentlevelof preconditioningin different
subdomainsandwill alsoshowby numericalexperimentsthat themethodsremaineffective
evenif j and k are far apart from each other. The idea is simple. We replace the required

matrix-vector multiply in (8) or (9)

(10) w = (alk))-lv

by another iterative procedure with (BIJ)) -1 as the preconditioner. Here B} j) is an incom-

plete factorization of A! j) with certain levels of fill-ins. More precisely speaking, to obtain

w for a given v, we run several steps of GMRES in the subspace Li to drive the residual

_/ 111 5 , AIk)fv)H z <_6 It(B}J')-lvlI2 •

We then set w := _b. Here ti is pre-selected small value. Examples can be found in §4 of

this paper. In the matrix language, we replace the matrix (Alk)) -1 in (10) by a matrix

polynomial

polyi((B}J))-XAl k))

of a certain degree, which depends of the number of GMRES iterations needed in the

subspace Li. To put them into a single form, the additive Schwarz preconditioner becomes

M = polyl ((B_J))-IAI k)) + ""+ polyno ((B(_))-la(k0)) •

Note that this preconditioner does not contain (Alk)) -1, but it contains certain spectral

information of (Alk)) -1. This makes it very effective. In fact, M is a truncated series rep-

resentation of (alk)) -1 based on a splitting of AI k) into the sum of B_ j) and al k)- BI j).

A discussion on a related polynomial preconditioning method can be found in [17]. We

note that in a given subdomain, the number of GMRES iterations, or the degree of the

polynomial, is determined by the conditioning of the local stiffness matrix. The multiplica-
tive version can be constructed in a similar way. The extension to the local multiplicative

Schwarz method ([7]) is also straightforward.
We remark that since the preconditioner changes in the GMRES loop due to the stop-

ping condition determined by 6, it is generally more appropriate to use the so-called flexible

GMRES [25], which is slightly more expensive than the regular one. We do not use the
flexible GMRES since the regular GMRES presents no problem for our test cases. The

implementation of the methods is rather complicated because of the use of multi-layered

Krylov iterations as a global, or outer, and also local solvers. PETSc makes our numerical

tests possible. More details regarding to the implementation will be discussed in the next

section.

4. Numerical results. The goal of this section is to demonstrate the usefulness of the

family of VDS preconditioners in the implicit solution of compressible flow problems, and to

compare the effectiveness of the methods with various other methods, such as the pointwise

Jacobi iterative method and the global ILU(0) preconditioned GMRES method, for both
subsonic and transonic flows. The experiments were performed on a DEC Alpha workstation

(275MHz. 512MB memory), and the software was written by using the newly developed

package PETSc [19] of the Argonne National Laboratory. All arithmetic operations are in



doubleprecision.The systemBLAS library (dxml [10])wasused.Only sequentialresults
are reportedhere.A parallelversionof thecodeis beingdeveloped,andtheresultswill be
reportedin the future. Hereweapplyourcomputationalalgorithmsto the simulationof
two-dimensionallow Reynoldsnumberchaoticflowspasta NACA0012airfoil at highangle
of attack and two differentMachnumbers.It wasshownin Pulliam [23]that suchflows
canbe resolvedwith a reasonablenumberof grid points. The accuracyof the computed
solutionsaresubstantiatedbysuccessivemeshrefinementsandcomparisonswith theresults
werereportedin [23].Nosteadystatesolutionsexistsfor both test casesdescribedbelow.

Test 1: Thesubsoniccasewith freestreamMachnumber_M_= 0.1 and Re = 800.0.

We use a pre-generated shape regular triangular mesh with 12280 nodes; see Fig.2 for

example. The Mach surfaces of the computed solution at various time steps are given in

Fig.5.
Test 2: The transonic case with free stream Mach number M_ = 0.84 and Re = 1600.0.

We use a mesh with 48792 nodes obtained by uniformly refining the mesh used in Test 1.

The Mach surfaces of the computed solution at various time steps are given in Fig.6.

TABLE 1

Total CPU hours and time steps spent for calculating the lift curves using explicit and implicit methods with

different CFL numbers. The total non-dimensionalized time interval is (0, 25} for the M.,_ = 0.1 case and

(0. I0) for the M:o = 0.84 case.

Expl. Impl. Impl. Impl.

CFL=0.8 CFL=25 CFL=50 CFL=100

M_ = 0.1 CPU(hours) 54.75 22.84 13.26 7.58

Meshl2k Time steps 196091 6018 3009 1504

Moo = 0.84 CPU(hours) 51.89 14.26 9.20 6.06

Mesh48k Time steps 48216 1389 694 347

In the following discussions, we shall refer to these two meshes as "Mesh12k" and

"Mesh48k", respectively. In the implementation of Schwarz preconditioners, we partition

the mesh by using the TOP/DOMDEC package [14], which implements the recursive spec-

tral bisection method. We require that all subdomains have more or less the same number

of mesh points. An effort is made to reduce the number of mesh points along the interfaces

of subdomains, which may be needed later in our parallel code to reduce the communica-

tion cost. The mesh generation and partitioning are considered as pre-processing steps, and

therefore not counted toward the CPU time reported in Table 1. The sparse matrix defined

by (4) is constructed at every time step, and stored in the Compressed Sparse Row format.

The subdomain matrices are obtained by taking elements, according to a pre-selected index

set, from the global matrix. A symbolic ILU(0) factorization of the subdomain matrix is

performed at the very first time step, and re-used at all the later time steps. This is possible

due to the fact that the matrices, constructed at every time step, share the same non-zero

pattern. We also tested the ILU(k) (k > 0) preconditioners, which are not competitive with

ILU(0) in terms of the CPU time in our implementation for both test cases. We remark that

if ILU with drop tolerance is used then the non-zero pattern of the matrices may change

and therefore the symbolic factorization may not be very useful.

We note that at the beginning of the flow movement, i.e., when the non-dimensional-

ized time t _< 1.0, the flow changes so drastically that the use of any _t _ that makes the

corresponding CFL number larger than 1.0 would result in the loss of time accuracy for the

9
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FIG. 3. Lift curves obtained by explicit and implicit methods. The left figure shows the subsonic cases with

M_ = 0.1, Re = 800.0 and the number of mesh points is 12280. The right figure is ]or the transonic cases

with M_ = 0.84, Re = 1600.0 and the number o[ mesh points is 48792.

entire calculation• This implies that small _t n have to be used when t < 1.0, and therefore,

the imphcit method has to be abandoned for this initial period of time. In our experiments,

the implicit solver is turned on at t = 1.0. The solution for the period 0 < t < 1.0 is
obtained with the explicit method with CFL=0.8.

4.1. The effect of using large CFL numbers. One of the biggest advantages of

imphcit methods is that large time steps, or large CFL numbers, can be used. We first

examine this claim by comparing the time accuracy of two solutions obtained by using the

implicit methods with CFL=25, 50 and 100, respectively, and the solution obtained by a

second order (in time and space) explicit method, [12]. From Fig.3, one can easily see that

no two different CFL numbers give identical solutions. However, the important thing for

engineering purposes is to capture correctly the "phase" and "amplitude" of the lifts. Small

errors in amplitude and phases are usually admissible• This can often substantially shorten

the turnaround times in the initial aerodynamic design and analysis.

For the implicit methods, we use the multipllcative VDS preconditioned GMRES method

as the global linear solver. The subdomain preconditioners are re-computed at every 5 time

steps. In the Schwarz methods, we use 8 subdomains, and ovlp = 1. Each subdomain prob-

lem is solved by an ILU(0) preconditioned GMRES method with the stopping tolerance set
to _ = 10 -1. The stopping tolerance for the global linear system solver is r = 10 -3. We

also test several cases with smaller r, such as 10 -4 and 10-5. The resulting lift curves are

not distinguishable from the ones shown in Fig.3.

In Table 1, we report the total number of time steps and CPU time in hours spent on

the entire computation, not including the mesh generation and partitioning. We observe
from our experiments that even with a CFL number, 100, not much time accuracy is lost

for a certain period of time, see Fig.3. However, if the time accuracy is required for a longer
period of time, we do recommend a smaller CFL number. We remark that our discussions

here on the effects on using large CFL numbers is based on our first order time discretization

scheme• The results may change slightly if higher order schemes are used.

4.2. The Schwarz parameters. The number of subdomains and the size of overlap
are two important parameters for Schwarz methods. We here test the additive and mul-

tiplicative VDS methods for both test cases. Instead of running the entire calculation as

10



we did in the previous section, we run the tests for only 100 time steps starting at t = 1.0.
In terms of the non-dimensional time, this means time intervals (1, 1.86) for Test 1 and

(1,2.28) for Test 2.

In the rest of the paper, we shall use MaxIt to denote the maximum number of global

GMRES iterations and TotalIt the total numbers of global GMRES iterations within this

100 linear system solves. To measure the approximate cost of the methods without includ-

ing any machine dependent factors, we use EMatVec to denote the equivalent number

of matrix-vector multiplications, which includes the actual stiffness matrix-vector multipli-

cations and the preconditioning-matrix-vector multiplications. Since different subdomains

may need different number of matrix-vector multiplications, we take the average over all
subdomains and convert it into a multiple of the equivalent global matrix-vector multipli-

cations. Suppose that fi is the size of the global matrix. Note that fi is 4 times the number

of mesh points. Then, one global matrix-vector multiplication requires roughly 28_ flops.

Our primary iterative solver GMRES has a complexity of I(I + 2)fi + Ix(cost of a precon-

ditioned matrix-vector multiplication). Here I is the number of iterations. For example,

the pure GMRES cost, without counting the cost of the matrix-vector multiplications, for

4 iterations is about 24_, which is a little less than the cost of doing 1 global stiffness

matrix-vector multiplication.

Let us first discuss the dependence of the convergence rate on the number of subdo-

mains. W'e use 5 different decompositions of f_, with both Meshl2k and Mesh48k. The

number of subdomains goes from 8 to 128. We run both Test 1 and 2, with ovlp equals to
one fine mesh cell. In Table 2, we present the maximum number of global GMRES iterations

within one hundred time steps and its corresponding EMatVec. If multiplicative VDS is

used even without the special subdomain coloring or ordering, MaxIt is independent of the

number of subdomains, for reasonably large number of subdomains, such as 128. An inter-

esting case is shown on the top left portion of Table 2, which indicates that if additive VDS

is used for the subsonic problem, the number of maximum iterations does grow, though not

very fast, as the number of subdomains becomes large. In this case, we believe that a coarse

space may be useful to reduce the dependence on the number of subdomains. However, we

have not implemented the coarse grid solver yet. For transonic problems, our tests show

that the use of a coarse level grid is not necessary with both additive and multiplicative

VDS preconditioners.
Whether overlap is useful or not is a rather subtle issue. It depends on the global linear

stopping parameter r defined in (7) and the local linear stopping parameter t_ defined in

(11). In Table 3, we report the case for $ = 10 -6 and varying r. According to the results in

Table 3 and a large number of other tests we did (not being reported here), large overlaps

can reduce the number of iterations and CPU time only if the stopping parameter _ is small.

In our situation when 7 = 10-3, we find $ = 10 -1 offers the best CPU results, and therefore

we do not need large overlaps. In the rest of the tests, we shall use this set of r and $, with

1 overlap.

We next exam the VDS methods. We focus on the case with 8 subdomains, and use

GMRES/ILU(0) as the local snbdomain solvers. The partitionings used for Meshl2k and
Mesh48k are different. The subdomains are numbered as in Fig.4. The results obtained

for one hundreds time steps starting at t = 1.0 are summerized in Table 4. We have also

run the test for t equals to other values and the results are more or less the same. We

use the same local stopping condition, namely _ = 10 -1 for all subdomains and for both

subsonic and transonic problems. It turns out the required degrees of local preconditioning

11



FI_. 4. The left figure shows the partitioning of Mesh12k into 8 subdomains and the right ones shows that

for Meshd8k.

polynomials are quite different. For the subsonic case, subdomains f_6 and f_s need more

iterations (4 and 6 respectively) than other subdomains. The left picture of Fig.4 shows

that these two subdomains cover the top portion of the airfoil. Only two iterations are

needed for subdomains that are far away from the airfoil, such as ftl, f/2 and f/3- The

number of iterations reflects the conditioning of the subdomain matrix. For the transonic

case, all subdomains need either one or two more iterations.

For both test problems, Table 2 and Table 4 show that both the number of global
iterations and the number of local iterations are surprisingly small, which indicate that the

linear system of equations (6) is in fact not too ill-conditioned. We believe that this is due

to the use of relatively small time steps (5).

4.3. A comparison with the pointwise Jaeobi iterative method. For compari-

son purpose, we solve both test problems by using the simplest iterative method, namely the

pointwise Jacobi method, which is often referred to as the Jacobi preconditioned Richard-
son's method. Jacobi method has a few very attractive features, such as being easy to

parallelize. Note that for multicomponent test problems, a point corresponds to a 4 × 4

matrix. When using the Jacobi method, a dense 4 × 4 matrix needs to be inverted at

every mesh point. In our experiments, at each time step before solving the linear system,

we compute the inverse of these 4 × 4 matrices explicitly and save them for the Jacobian

iterations. As before, we run the tests for one hundred time steps and record the maximum

number of iterations as well as the total number of iterations, see Table 5. We observe that.

in terms of iteration numbers for solving linear systems, the transonic problem is easier

to handle than the subsonic problem, which is more of an elliptic system. Comparing the

Totallt, which equals to the total number of EMatVec, in Table 5, and the total EMatVec

numbers in Table 2, we found that Jacobi is considerably more expensive than the Schwarz

preconditioned GMRES methods. We believe that the required number of iterations would

grow much faster if finer meshes are used than that of the Schwarz preconditioned GMRES
methods.

12



4.4. A comparison with a global ILU(0) preconditioned GMRES method. In

Table .5. we show the maximum and total number of iterations when using the global ILU(0)

preconditioned GMRES method for both test cases. In terms of the number of EMatVec.

the method outperforms, by a factor of .5% to 30%(Comparing Table .5 and the bottom part

of Table 2), the multiplicative VDS preconditioned GMRES methods we discussed in the

paper. Unfortunately, its parallelization on distributed memory computers is not very easy.

4.5. The effect of frozen preconditioner. Finally, we examined the effect of using

the same preconditioner, or part of the preconditioner, for several time steps without doing

the factorization at every time step. In Table 6, we summerize the results for using different

numbers of frozen steps, namely Froz = 1, 5, .... There is a range of optimal Doz one can

choose from; similar numbers of EMatVec were obtained in our implementation for Froz

ranging from 5 to .50. For the subsonic case, we can go a bit further, e.g., take Doz = 100.

5. Conclusions. We proposed and tested a family of variable degree Schwarz (VDS)

preconditioned GMRES methods for solving linear systems that arise from the discretization

of unsteady, compressible N.-S equations on 2D unstructured meshes for both subsonic

and transonic flows past a single element NACA0012 airfoil. We found that with implicit

methods, larger time steps can be used and the overall simulation time can be reduced

significantly comparing with the explicit method.

In VDS. the level of preconditioning in each subdomain varies according to the local flow

condition, therefore extra preconditioning is performed only when and where it is needed.

For subsonic problems, we found that the conditioning of the subdomain matrices changes

quite a bit from one flow region to another, and extra local preconditioning in subdomains

in which the flow changes drastically can significantly reduce the total number of global

linear iterations. This is somewhat less obvious for transonic flow, which needs a nearly

uniformly small global and local number of iterations.

When using VDS, the best results are obtained with small overlap. For the multipllca-

tive version, the convergence rate depends very mildly on the number of subdomains (up

to 128 subdomains has been tested), and for the additive version, a slight dependence is

observed for the subsonic test problem and therefore a coarse space might be useful. We

also compared our methods with the simple point(means 4 x 4 block for our multicomponent

problems) Jacobi iterative method and the global ILU(0) preconditioned GMRES method.

We found that Jacobi is significantly slower than the proposed methods, especially for the

subsonic case, and if sequential computers are the primary computing platform, then the

global ILU(0) preconditioned GMRES is a winner over all methods we have tested.

All of our tests were done on a sequential computer. Considerable effort is needed in

order to obtain a well-balanced parallel implementation. We remark that our mesh parti-

tioning is obtained without the knowledge of the flow condition and our experiences show

that a solution dependent mesh partitioning would offer a more computationally balanced

decomposition of the problems.
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FIG. 5. The Moch distribT*tion at M_ = 0.1, .[or non-dimens_onalized time t = 2.3 ..... 9.
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FIG. 6. The Mach distribution at M_ = 0.84, for non-dimensionalized time t = 2, 3 ..... 9.
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TABLE 2

Each test is for 100 time steps and at each time step the initial preconditioned residual is reduced by a factor

of 7- = 10 -3 by using GMRES//VDS with ovip = 1. We use GMRES/ILU(O) as inexact local solvers to

reduce the local preconditioned residual by a factor of/_ = 10 -1 . Here CFL=50.

ASM Test 1

# subdommns Maxlt TotalIt
8 6 545

16 7 585

32 9 673

64 10 756

128 11 842

MSM Test 1

EMatVec

3150

3529

3851

4223

5621

8 4 292 1613

16 4 316 1812

32 4 320 1834

64 4 344 1900

128 4 351 2335

MaxIt

6

6

6

6

7

Test 2

TotalIt EMatVec

519 1471

506 1628

560 1864

600 2184

603 2192

Test 2

300 832

300 915

300 994

300 1089

300 1084

TABLE 3

GMRES iteration numbers to reduce the preconditioned residual of Test 1 to r = 10-6 using GM-
RES//(additive VDS) with 8 subdomains. We use GMRES//ILU(O) as inexact local solver with different
local stopping criteria. Here CFL=IO0.

ovlp =0 ovlp= 1 ovlp =2 ovlp= 3

1 iteration 35 43 46 48

= 5.0e -1 23 32 33 33

= 3.0e -1 18 20 19 19

= 1.0e -1 16 15 14 14

= 1.0e -2 15 12 11 10

exact 15 11 10 9

TABLE 4

The maximum (Maxlt) and total (Totallt) local GMRES/IL U(O) iteration numbers. The global solver is

GMRES/(multiplicative VDS). The parameters are r = 10 -3, _ = 10 -1 , ovlp = 1 and the local solvers are

ILU(O). Here CFL=50.

_"_1 _'_2 _"_3 _4 _'_5 _6 _"_7

Test 1, Maxlt 2 2 2 3 4 6 3

Tot_lIt 150 106 113 225 307 597 291

Test 2, Maxlt 2 2 2 2 2 2 1

TotalIt 127 200 109 107 132 185 150

_8

5

421

1

100
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TABLE5
The number of equivalent EMatVec operations needed ]or 100 time steps starting at t = 1.0.

= 10 -_, CFL=50.

r = 10 -3,

4 × 4 Jacobi Global ILU(0)

Test 1, MaxIt 74 10

EMatVec 7299 1472

Test 2, MaxIt 46 4
EMatVec 4222 800

TABLE 6

The number of EMatVec operations needed for I00 time steps starting at t = 1.0. In GMRES/(multiplicative

VDS), 7" = 10 -3, 6 = 10 -1 , CFL=50, number of subdomains is 8 and ovlp = 1. For the Froz=200 case, the

numbers are taken for 200 time steps divided by 2.

Froz= 1 5 10 50 100 200

Test 1, EMatVec 1613 1611 1615 1618 1629 1875
TotalIt 292 292 291 290 291 321

Test 2, EMatVec 832 829 830 842 868 1243

TotalIt 300 300 300 305 315 469
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